Tidy Tuesday Customs and Border Protection

By Steve Ewing

November 26, 2024

This weeks Tidy Tuesday data is from the Customs and Border Protection. The data is available from 2020 to present. The data is available from the CBP website. It was written up first for the Tidy Tuesday blog by Tony Galvan here.

“Encounter data includes U.S. Border Patrol Title 8 apprehensions, Office of Field Operations Title 8 inadmissibles, and all Title 42 expulsions for fiscal years 2020 to date. Data is available for the Northern Land Border, Southwest Land Border, and Nationwide (i.e., air, land, and sea modes of transportation) encounters.

Data is extracted from live CBP systems and data sources. Statistical information is subject to change due to corrections, systems changes, change in data definition, additional information, or encounters pending final review. Final statistics are available at the conclusion of each fiscal year.” - CBP

library(tidyverse)
library(janitor)

cbp_resp <- bind_rows(
  read_csv("https://www.cbp.gov/sites/default/files/assets/documents/2023-Nov/nationwide-encounters-fy20-fy23-aor.csv", show_col_types = FALSE),
  read_csv("https://www.cbp.gov/sites/default/files/2024-10/nationwide-encounters-fy21-fy24-aor.csv", show_col_types = FALSE)
) |>
  janitor::clean_names() |>
  unique()

cbp_state <- bind_rows(
  read_csv("https://www.cbp.gov/sites/default/files/assets/documents/2023-Nov/nationwide-encounters-fy20-fy23-state.csv", show_col_types = FALSE),
  read_csv("https://www.cbp.gov/sites/default/files/2024-10/nationwide-encounters-fy21-fy24-state.csv", show_col_types = FALSE)
) |>
  janitor::clean_names() |>
  unique()

Data exploration

cbp_resp |>
  glimpse()
## Rows: 68,815
## Columns: 12
## $ fiscal_year            <dbl> 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020,…
## $ month_grouping         <chr> "FYTD", "FYTD", "FYTD", "FYTD", "FYTD", "FYTD",…
## $ month_abbv             <chr> "APR", "APR", "APR", "APR", "APR", "APR", "APR"…
## $ component              <chr> "Office of Field Operations", "Office of Field …
## $ land_border_region     <chr> "Northern Land Border", "Northern Land Border",…
## $ area_of_responsibility <chr> "Boston Field Office", "Boston Field Office", "…
## $ aor_abbv               <chr> "Boston", "Boston", "Boston", "Boston", "Boston…
## $ demographic            <chr> "FMUA", "FMUA", "Single Adults", "Single Adults…
## $ citizenship            <chr> "BRAZIL", "CANADA", "CANADA", "CANADA", "CHINA,…
## $ title_of_authority     <chr> "Title 8", "Title 8", "Title 42", "Title 8", "T…
## $ encounter_type         <chr> "Inadmissibles", "Inadmissibles", "Expulsions",…
## $ encounter_count        <dbl> 3, 1, 2, 239, 1, 0, 1, 6, 1, 1, 1, 18, 52, 1, 2…

encounter_type (character) - The category of encounter based on Title of Authority and component (Title 8 for USBP = Apprehensions; Title 8 for OFO = Inadmissibles; Title 42 = Expulsions)

table(cbp_resp$encounter_type)
## 
## Apprehensions    Expulsions Inadmissibles 
##         22137          9638         37040

component (character) - Which part of CBP was involved in the encounter (“Office of Field Operations” or “U.S. Border Patrol”)

table(cbp_resp$component)
## 
## Office of Field Operations         U.S. Border Patrol 
##                      40483                      28332

title_of_authority (character) - The authority under which the noncitizen was processed (Title 8: The standard U.S. immigration law governing the processing of migrants, including deportations, asylum procedures, and penalties for unauthorized border crossings. Title 42: A public health order used during the COVID-19 pandemic to rapidly expel migrants at the border without standard immigration processing, citing health concerns.)

table(cbp_resp$title_of_authority)
## 
## Title 42  Title 8 
##     9638    59177

What is this month grouping?

table(cbp_resp$month_grouping)
## 
##  FYTD 
## 68815

Who did they use the title 42 expulsion power on?

library(kableExtra)
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
expulsions <- cbp_resp %>%
  filter(title_of_authority == "Title 42") %>%
  group_by(citizenship, fiscal_year) %>%
  summarise(total = sum(encounter_count), .groups = "drop") %>%
  pivot_wider(names_from = fiscal_year, values_from = total, names_prefix = "FY ") %>%
  arrange(desc(`FY 2023`)) %>%
  mutate(across(starts_with("FY"), ~ format(., big.mark = ",", scientific = FALSE)))

expulsions %>%
  kbl(
    caption = "Title 42 Expulsions by Citizenship and Fiscal Year",
    format = "html",
    digits = 0
  ) %>%
  kable_styling(
    bootstrap_options = c("striped", "hover", "condensed", "responsive"),
    full_width = TRUE,
    font_size = 12
  ) %>%
  add_header_above(c(" " = 1, "Fiscal Years" = ncol(expulsions) - 1)) %>%
  column_spec(1, width = "10em", bold = TRUE) %>% 
  column_spec(2:ncol(expulsions), width = "8em") 
(\#tab:expulsions)Title 42 Expulsions by Citizenship and Fiscal Year
Fiscal Years
citizenship FY 2020 FY 2021 FY 2022 FY 2023
MEXICO 157,952 582,813 693,044 349,685
GUATEMALA 15,161 173,679 154,302 63,098
HONDURAS 17,041 167,388 134,095 54,452
VENEZUELA 49 1,283 707 38,853
EL SALVADOR 5,946 56,769 56,322 21,132
ECUADOR 2,245 54,683 1,155 14,429
COLOMBIA 56 1,069 12,327 13,108
OTHER 1,095 5,532 13,567 7,208
CUBA 4,751 7,229 4,905 4,085
INDIA 310 1,012 5,133 4,072
NICARAGUA 370 3,293 4,158 3,064
PERU 50 1,063 922 2,789
CANADA 538 1,822 3,339 760
CHINA, PEOPLES REPUBLIC OF 95 318 1,401 671
BRAZIL 268 2,587 5,017 484
HAITI 751 10,211 12,358 349
PHILIPPINES 33 107 336 334
UKRAINE 7 21 390 190
RUSSIA 22 69 163 129
ROMANIA 40 98 188 99
TURKEY 3 25 131 93
MYANMAR (BURMA) NA 4 6 NA

What did the inadmissibles look like?

inadmissibles <- cbp_resp |>
  filter(title_of_authority == "Title 8", encounter_type == "Inadmissibles") |>
  group_by(citizenship, fiscal_year) |>
  summarise(total = sum(encounter_count), .groups = "drop") |>
  pivot_wider(names_from = fiscal_year, values_from = total, names_prefix = "FY ") %>%
  arrange(desc(`FY 2023`)) %>%
  mutate(across(starts_with("FY"), ~ format(., big.mark = ",", scientific = FALSE)))

inadmissibles %>%
  kbl(
    caption = "Title 8 Inadmissibles by Citizenship and Fiscal Year",
    format = "html",
    digits = 0
  ) %>%
  kable_styling(
    bootstrap_options = c("striped", "hover", "condensed", "responsive"),
    full_width = TRUE,
    font_size = 12
  ) %>%
  add_header_above(c(" " = 1, "Fiscal Years" = ncol(inadmissibles) - 1))
(\#tab:inadmissibles)Title 8 Inadmissibles by Citizenship and Fiscal Year
Fiscal Years
citizenship FY 2020 FY 2021 FY 2022 FY 2023 FY 2024
HAITI 739 2,508 25,566 161,155 218,007
OTHER 42,112 37,392 75,094 142,570 134,973
MEXICO 47,452 44,790 59,053 138,236 161,877
VENEZUELA 3,246 2,652 1,917 132,880 178,850
UKRAINE 7,672 9,315 96,396 101,543 78,557
CUBA 4,038 805 1,307 78,833 203,929
PHILIPPINES 45,815 46,235 54,769 51,043 48,381
RUSSIA 5,895 12,663 30,899 49,641 20,526
INDIA 18,356 27,088 40,336 49,497 50,681
CANADA 20,224 20,504 43,727 43,784 44,783
NICARAGUA 999 837 953 40,846 57,815
HONDURAS 2,737 11,532 15,231 34,758 32,621
CHINA, PEOPLES REPUBLIC OF 17,019 22,834 24,376 27,920 40,725
COLOMBIA 2,366 4,452 5,536 12,668 22,508
BRAZIL 2,084 1,166 5,618 10,542 5,798
EL SALVADOR 1,018 3,170 4,352 9,305 11,409
GUATEMALA 1,408 4,541 4,174 7,747 10,914
MYANMAR (BURMA) 3,061 3,836 4,462 4,253 4,993
TURKEY 2,499 3,597 3,980 3,425 2,678
PERU 1,643 2,012 2,650 3,422 5,195
ECUADOR 871 1,028 832 3,391 7,584
ROMANIA 1,120 1,015 1,245 1,187 1,019

What did the apprehensions look like?

apprehensions <- cbp_resp |>
  filter(title_of_authority == "Title 8", encounter_type == "Apprehensions") |>
  group_by(citizenship, fiscal_year) |>
  summarise(total = sum(encounter_count), .groups = "drop") |>
  pivot_wider(names_from = fiscal_year, values_from = total, names_prefix = "FY ") %>%
  arrange(desc(`FY 2023`)) %>%
  mutate(across(starts_with("FY"), ~ format(., big.mark = ",", scientific = FALSE)))

apprehensions %>%
  kbl(
    caption = "Title 8 Apprehensions by Citizenship and Fiscal Year",
    format = "html",
    digits = 0
  ) %>%
  kable_styling(
    bootstrap_options = c("striped", "hover", "condensed", "responsive"),
    full_width = TRUE,
    font_size = 12
  ) %>%
  add_header_above(c(" " = 1, "Fiscal Years" = ncol(apprehensions) - 1))
(\#tab:apprehensions)Title 8 Apprehensions by Citizenship and Fiscal Year
Fiscal Years
citizenship FY 2020 FY 2021 FY 2022 FY 2023 FY 2024
MEXICO 103,826 47,136 70,960 248,016 506,211
VENEZUELA 1,225 46,564 186,896 163,181 134,646
GUATEMALA 32,867 106,071 74,585 151,004 196,057
OTHER 4,266 14,433 48,667 149,797 132,602
COLOMBIA 346 4,974 113,108 141,612 112,168
HONDURAS 23,579 142,229 65,649 126,818 111,752
CUBA 5,226 31,269 218,395 117,369 13,686
ECUADOR 9,776 41,363 22,949 99,667 116,439
NICARAGUA 1,795 46,592 159,489 94,819 33,234
PERU 391 2,102 49,616 71,991 34,005
INDIA 1,217 2,562 18,458 43,348 39,734
EL SALVADOR 10,749 39,524 37,123 32,409 45,798
CHINA, PEOPLES REPUBLIC OF 1,281 319 1,979 24,109 37,976
BRAZIL 6,795 54,306 46,386 21,466 26,332
TURKEY 78 1,367 15,359 15,468 10,633
RUSSIA 29 508 5,209 7,393 1,365
ROMANIA 326 4,046 5,978 2,406 1,529
HAITI 3,801 36,008 18,672 2,277 2,791
CANADA 75 45 60 156 262
UKRAINE 9 42 591 82 48
PHILIPPINES 7 11 12 22 40
MYANMAR (BURMA) 1 1 2 4 11

Make a facet plot of the data.

plot_data <- cbp_resp %>%
  group_by(citizenship, fiscal_year, encounter_type) %>%
  summarise(total = sum(encounter_count, na.rm = TRUE), .groups = 'drop') %>%
  mutate(fiscal_year = as.factor(fiscal_year))

ggplot(plot_data, aes(x = fiscal_year, y = total, fill = encounter_type)) +
  geom_bar(stat = "identity", position = "stack") +  
  facet_wrap(~ citizenship, scales = "free_y") +     
  labs(
    title = "Encounters by Citizenship and Year",
    x = "Fiscal Year",
    y = "Total Encounters",
    fill = "Encounter Type"
  ) +
  theme_minimal() +
  theme(
    strip.text = element_text(size = 8, face = "bold"),  
    axis.text.x = element_text(angle = 45, hjust = 1)    
  )
Posted on:
November 26, 2024
Length:
7 minute read, 1332 words
Tags:
R tidy tuesday
See Also:
Bluesky Unfollowing Negative Follows
Bluesky Sentiment Indexing
Andrew Wheiss's Bluesky Bot